

Bethe–Salpeter studies of mesons beyond rainbow-ladder

Richard Williams

 $1^{\rm st}$ June 2010

12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

College of William and Mary, Williamsburg, Virginia

Quantum Chromodynamics is a beast

- DOF are the quarks and gluons
- non-Abelian gauge theory

$$Z[J,\eta,\bar{\eta}] = \int \mathcal{D}[A,\psi,\bar{\psi}] \exp\left\{-\int_x \bar{\psi}(D\!\!\!/ + m)\psi + \frac{1}{4}F_{\mu\nu}^2 + \int_x A^a_\mu J^a_\mu + \bar{\eta}\psi + \eta\bar{\psi}\right\}$$

Quantum Chromodynamics is a beast

- DOF are the quarks and gluons
- non-Abelian gauge theory

Features various phenomena

- Asymptotic freedom
 - weakly coupled at large momenta
 - perturbation theory
- Confinement
 - Strong coupling at low momenta
 - Physical observables colourless bound-states
- Dynamical Chiral Symmetry Breaking

$$Z[J,\eta,\bar{\eta}] = \int \mathcal{D}[A,\psi,\bar{\psi}] \exp\left\{-\int_x \bar{\psi}(D\!\!\!/ + m)\psi + \frac{1}{4}F_{\mu\nu}^2 + \int_x A^a_\mu J^a_\mu + \bar{\eta}\psi + \eta\bar{\psi}\right\}$$

Quantum Chromodynamics is a beast

- DOF are the quarks and gluons
- non-Abelian gauge theory

Features various phenomena

- Asymptotic freedom
 - weakly coupled at large momenta
 - perturbation theory
- Confinement *
 - Strong coupling at low momenta
 - Physical observables colourless bound-states
- Dynamical Chiral Symmetry Breaking *

★ Interested in:

via Dyson-Schwinger equations

- Infrared properties
- Hadronic contributions to physical processes
- Determine properties of Hadronic bound-states

Hadronic Applications	
• g-2	(Fischer)
bound-state masses	
electromagnetic form-factors, charge radius, transition matrix elements	(Tandy)
 leptonic decay constants 	
Consequences of a dressed quark-gluon vertex	
• $U_A(1)$ anomaly	
analytic structure of the quark propagator	
 unquenching effects 	
•	
Considerations	
 Preservation of symmetries (pions as Goldstone bosons) 	
 How to make systematic improvements 	

Bound-state equations

Homogeneous Bethe-Salpeter equation

Consider poles in four-quark scattering amplitude

- gauge-dependent Green's fns. \leftrightarrow to physical observables
- colourless bound-states in terms of quarks and gluons

Solution requires input

- Covariant structure of amplitude
- Quark propagator
- Bethe-Salpeter kernel

(J^{PC} of bound-state) (constituent of b.s) (interaction)

Dyson-Schwinger equations

- Exact equations of QCD.
- All propagators (inside loops) are fully dressed.

Axial-vector Ward-Takahashi identity

$$\left\{\gamma^{5}\Sigma\left(-p_{-}\right)+\Sigma\left(p_{+}\right)\gamma^{5}\right\}_{\alpha\beta}=-\int K_{\alpha\gamma,\delta\beta}\left(p,q,P\right)\left\{\gamma^{5}S\left(-q_{-}\right)+S\left(q_{+}\right)\gamma^{5}\right\}_{\gamma\delta}$$

axWTI connects quark self-energy and the Bethe-Salpeter kernel

- truncation must consider this
- important for chiral properties of pseudoscalars
- Gell-Mann–Oakes-Renner / massless pion in the chiral limit
- \rightarrow difficult and intricate to implement in practice.

$$m_{\pi}^2 f_{\pi} \simeq 2m_q \left< \bar{q}q \right>$$

$$\Gamma^{\mu}\left(k,p;\mu\right)=iZ_{2}\gamma^{\mu}$$

$$K_{\alpha\gamma,\beta\delta}\left(p,q,P\right) = Z_2^2 g^2 \left(\frac{\lambda^i}{2}\right)_{AC} \left(\frac{\lambda^i}{2}\right)_{BD} \left(i\gamma^{\mu}\right)_{\alpha\gamma} D^{\mu\nu}(q) \left(i\gamma^{\nu}\right)_{\beta\delta}$$

Iterated one-gluon exchange

$$\Gamma^{\mu}\left(k,p;\mu\right)=iZ_{2}\gamma^{\mu}$$

$$K_{\alpha\gamma,\beta\delta}\left(p,q,P\right) = Z_{2}^{2}g^{2}\left(\frac{\lambda^{i}}{2}\right)_{AC}\left(\frac{\lambda^{i}}{2}\right)_{BD}\left(i\gamma^{\mu}\right)_{\alpha\gamma}D^{\mu\nu}(q)\left(i\gamma^{\nu}\right)_{\beta\delta}\cdot\lambda_{1}\left(q^{2}\right)$$

- Iterated one-gluon exchange
- Also: dress γ^{μ} vertex with function $\lambda_1 \left(q^2\right)$
- Reduces twelve components of k^2, p^2, q^2 to one with only q^2 dependence.

Combination $\lambda_1\left(q^2\right)D^{\mu
u}\left(q
ight)$ usually modelled as an effective interaction

Successes

- Largely depend on generating DCSB consistent with AXWTI.
- Get it right \longrightarrow correct (light) pseudoscalar observables

Successes

- Largely depend on generating DCSB consistent with AXWTI.
- Get it right \longrightarrow correct (light) pseudoscalar observables

Phenomenological

- Effective interaction $(\gamma^{\mu}\otimes\gamma^{\mu})$ tuned to generate DCSB
- Quantities tend to be insensitive to the model details.

Cannot learn about details of interaction from meson observables.

Successes

- Largely depend on generating DCSB consistent with AXWTI.
- Get it right \longrightarrow correct (light) pseudoscalar observables

Phenomenological

- Effective interaction ($\gamma^{\mu}\otimes\gamma^{\mu}$) tuned to generate DCSB
- Quantities tend to be insensitive to the model details.

Cannot learn about details of interaction from meson observables.

Philosophical improvements

- Use calculated Lattice/DSE/FRG gluon
- Model quark-gluon vertex dressing
- Model quark-mass dependence
- use solutions of quark-gluon vertex DSE as a starting point

Successes

- Largely depend on generating DCSB consistent with AXWTI.
- Get it right \longrightarrow correct (light) pseudoscalar observables

Phenomenological

- Effective interaction ($\gamma^{\mu}\otimes\gamma^{\mu}$) tuned to generate DCSB
- Quantities tend to be insensitive to the model details.

Cannot learn about details of interaction from meson observables.

Philosophical improvements

- Use calculated Lattice/DSE/FRG gluon
- Model quark-gluon vertex dressing
- Model quark-mass dependence
- use solutions of quark-gluon vertex DSE as a starting point

What about considering the Quark-Gluon Vertex DSE?

Quark-Gluon Vertex

Hadronic Contributions

- Abelian-like corrections.
- resonant contributions.

Unquenching Effects

Dominant Yang-Mills part

- non-Abelian corrections.
- non-resonant contributions.

Infrared effects + $D\chi SB$

[R. Alkofer, C. S. Fischer, F. Llanes-Estrada, K. Schwenzer, Annals Phys.324:106-172,2009.]

Quark-Gluon Vertex – Hadronic Contributions I

Quark-Gluon Vertex – Hadronic Contributions II

Lattice Comparison

Impact of back-reaction consistent with quenched vs unquenched lattice[†] data.

† [P. O. Bowman et al, Phys.Rev.D71:054507,2005]

[C. S. Fischer, D. Nickel and RW, Eur.Phys.J.C60:1434-6052,2008]

Beyond Rainbow-Ladder

Normalisation: Leon–Cutkosky

$$\delta^{ij} = rac{\partial}{\partial P^2} \mathrm{tr} \int_k \left[\left(\overline{\Gamma}^i_\pi S \Gamma^j_\pi S
ight) + \int_q \left([\overline{\chi}^i_\pi]_{sr} K_{tu;rs}[\chi^j_\pi]_{ut}
ight)
ight]$$

usual approach to determining normalisation condition

lines dashed lines wiggles quark propagator. quark propagator fixed wrt. derivative. gluon propagator.

[R. E. Cutkosky and M. Leon, Phys. Rev. 135 (1964) B1445.]

Normalisation: Nakanishi

alternative hidden in the literature

- considerably simpler
- valid for all truncations
- first time applied beyond rainbow-ladder

[N. Nakanishi, Phys. Rev. 138, B1182 (1965)]

Choose the truncation

Aim | formulate consistent truncation scheme and calculate:

- quark-gluon vertex leading corrections + unquenching
- quark propagator
- couple in the Yang-Mills sector:
 - gluon/ghost propagator, three-gluon vertex

Feasibility Study

- effective interaction for gluons
- No momentum trivialisation!
- Solve complicated system of equations
- Gauge impact of diagrammatic contributions

Use a finite width representation of delta-function: (parameters tuned to reproduce meson observables in Rainbow-Ladder)

[R. Alkofer, P. Watson and H. Weigel, Phys. Rev. D 65 (2002) 094026]

Results

Calculate:

- Propagators and vertices: C momenta.
- Homogeneous BS amplitude solved

Model	m_{π}	m_{σ}	$m_ ho$	m_{a_1}	m_{b_1}
RL	138	645	758	926	912
NA	142	884	881	1056	973
AB	137	602	734	889	915
AB+NA	142	883	878	1052	972
NA+PI	138	820	805	1040	941
PDG	138	400-1200	776	1230	1230

All masses are in MeV.

[C. S. Fischer and RW, Phys.Rev.Lett.103:122001,2009]

[RW, proceedings, arXiv:0912.3494]

RL – Rainbow-Ladder

NA – Non-Abelian correction

AB – Abelian correction

PI – Resonant Pion contribution.

Next steps

Next steps

Beyond Impulse-Approximation

- Consistent with BSE truncation must satisfy current conservation
- Dressed quark-photon vertex
- X Explicitly three-loop

include inputs from gluon DSE, internal quark-gluon vertex, dressed three-gluon vertex.

 \rightarrow examine meson spectrum

Conclusions

Summary

- outlined framework for DSE/BSE calculations of QCD
- systematic improvements beyond Rainbow-Ladder
 - leading unquenching effects
 - leading Yang-Mills corrections
 - sub-leading YM corrections
- numerical techniques
- on normalisation
- results from feasibility study

Outlook

- Take inputs from DSE solutions self-consistent truncation of QCD
- Calculate basic meson observables
- Pion electromagnetic form-factor
- ...
- Connect with baryon studies

(Eichmann 6C)